The C*-algebra of a Minimal Homeomorphism of Zero Mean Dimension

نویسنده

  • GEORGE A. ELLIOTT
چکیده

Let X be an infinite compact metrizable space, and let σ : X → X be a minimal homeomorphism. Suppose that (X,σ) has zero mean topological dimension. The associated C*algebra A = C(X) oσ Z is shown to absorb the Jiang-Su algebra Z tensorially, i.e., A ∼= A⊗ Z. This implies that A is classifiable when (X,σ) is uniquely ergodic. Moreover, without any assumption on the mean dimension, it is shown that A ⊗ A always absorbs the Jiang-Su algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Subalgebras and the Structure of Crossed Products

We give a survey of large subalgebras of crossed product C*algebras, including some recent applications (by several people), mostly to the transformation group C*-algebra C∗(Z, X, h) of a minimal homeomorphism h of a compact metric space X: • If there is a continuous surjective map from X to the Cantor set, then C∗(Z, X, h) has stable rank one (regardless of the mean dimension of h). • If there...

متن کامل

Dimension Groups of Topological Joinings and Non-coalescence of Cantor Minimal Systems

By a topological dynamical system (Y, ψ), we mean a compact Hausdorff space Y endowed with a homeomorphism ψ. When (Yi, ψi), i = 0, 1 are two topological dynamical systems, ψ0 × ψ1-invariant closed subsets of Y0 × Y1 are called (topological) joinings, and when (Y0, ψ0) equals (Y1, ψ1), they are called self-joinings. In the measure-theoretical setting, the notion of selfjoinings was introduced b...

متن کامل

Crossed Products by Minimal Homeomorphisms

Let X be an infinite compact metric space with finite covering dimension and let h : X → X be a minimal homeomorphism. We show that the associated crossed product C*-algebra A = C∗(Z, X, h) has tracial rank zero whenever the image of K0(A) in Aff(T (A)) is dense. As a consequence, we show that these crossed product C*-algebras are in fact simple AH algebras with real rank zero. When X is connec...

متن کامل

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015